2x^2-2,25+3x+x^2=x^2+x+0,25

Simple and best practice solution for 2x^2-2,25+3x+x^2=x^2+x+0,25 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x^2-2,25+3x+x^2=x^2+x+0,25 equation:



2x^2-2.25+3x+x^2=x^2+x+0.25
We move all terms to the left:
2x^2-2.25+3x+x^2-(x^2+x+0.25)=0
We add all the numbers together, and all the variables
3x^2+3x-(x^2+x+0.25)-2.25=0
We get rid of parentheses
3x^2-x^2+3x-x-0.25-2.25=0
We add all the numbers together, and all the variables
2x^2+2x-2.5=0
a = 2; b = 2; c = -2.5;
Δ = b2-4ac
Δ = 22-4·2·(-2.5)
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{6}}{2*2}=\frac{-2-2\sqrt{6}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{6}}{2*2}=\frac{-2+2\sqrt{6}}{4} $

See similar equations:

| 19x2+11x+1=0 | | 119+69+83+a=360 | | 162=12k | | 5x+2x+120=180 | | 2x-4+8=8 | | 9x+37=x | | 7(r+1)=3(r-1) | | -4x+3(x+2)=18 | | 3x–8=10 | | 5(-7-2x)=9(-4-x) | | x•7=161 | | 3n-2=-8+2n | | x^2−14x−42=9 | | 5g+3=2g-12 | | 5(x+9)=-3 | | -20x^2(x+30x(x-2=0 | | 3x+2-2=7x-16 | | x2−14x−42=9 | | 12+4x=8x-4 | | 12x-2=33 | | d+3=-23 | | 6-2/5(x+5)=4x | | 24+4s=(12+6)s | | 7-a/5=2 | | x+0.11x=477.3 | | x²-4x-96=0 | | 12x-160=0 | | x2+6+10=0 | | 6.5n=127.4 | | 281=110-y | | 7x+8x+4x+5x=360 | | 6-5(4-3k)-9k=-4 |

Equations solver categories